Start

Slider

Posted: Friday, December 6, 2013 - 16:33

EEE598: Photovoltaic (PV) Systems
Spring 2014

The use of photovoltaics (PV) has increased dramatically over the last years, driven by cost reductions in the PV systems. The goal of the course is to be able to calculate, design and understand the components of PV systems; design and optimize a PV system for a range of PV applications; to be able to calculate and analyze the initial and levelized cost of PV electricity; understand and analyze the reliability of the PV systems; and to understand how non-technical barriers and incentives affect PV Systems.

Posted: Wednesday, December 4, 2013 - 16:33

The Solar Power Labs is featured on STEM journals on Cox Ch. 7. It is originally broadcast on Nov 20 at 8 pm and is archived on the web at: http://www.cox7.com/alternative-energy Our section starts at time 12:50.

We even had Geoff make a solar cell in our lab.

 

Posted: Thursday, November 28, 2013 - 18:37

Discussion of our recent research on PBS Horizon

Stuart Bowden on PBS Horizon

http://www.youtube.com/watch?v=H9-wq9WK1wI&t=16m48s

Posted: Thursday, November 28, 2013 - 18:37

Discussion of our recent research on PBS Horizon

Stuart Bowden on PBS Horizon

http://www.youtube.com/watch?v=H9-wq9WK1wI&t=16m48s

Posted: Monday, October 28, 2013 - 13:54

Surface recombination is a critical parameter that determines the perfromance of thin silicon solar cells. We have developed a passivation process with very low recomination giving very high minority lifetimes in crystalline silicon exceeding 60 ms.

Posted: Friday, September 6, 2013 - 17:48

Vivek Sharma is our most recent graduate. He successfully defended his PhD thesis in September, 2013 on the "Study of Chrages Present in SIlicon Nitride Films" During his PhD he demonstrated the ability of silicon nitride to hold both positive and negative charge and to hold that charge over extended periods. The work has important implications for advanced silicon solar cells where recombination at the surfaces is increasingly important and there is a wide range in electronic doping and type.

Posted: Sunday, August 11, 2013 - 11:06

A recent publication in Applied Physics Letters published a result showing a solar cell with an open circuit voltage of 753 mV. To date this is the highest published value of an open circuit voltage in a silicon solar device. The article citation is: S. Y. Herasimenka, W. J. Dauksher, and S. G. Bowden, “>750 mV open circuit voltage measured on 50 μm thick silicon heterojunction solar cell,” Applied Physics Letters, vol. 103, no. 5, pp. 053511–053511–4, Aug. 2013.

Posted: Saturday, July 27, 2013 - 11:41

The solar power lab is now powered by solar! The solarization project at ASU continues to expand with the latest addition being 1 MW of capacity covering the building and parking lot of MacroTechnologyWorks, which is the building that houses the Solar Power Labs. The system provides more than enough power to offset the usage of the solar power lab. As a grid tied system, the extra power on sunny days is fed back into the grid.

Posted: Saturday, July 27, 2013 - 10:28

The Solar Power Laboratory runs undergraduate research projects, many of which are provided by the Fulton Undergraduate Research Initiative (FURI). Read more about the experiences of a recent undergraduate researcher here.

Posted: Wednesday, July 24, 2013 - 16:38

As posted on ASU's research matters web site: Natasa Vulic is helping improve the efficiency of solar cells to meet future energy demand. She began her research in ASU’s Solar Power Lab as an ASU undergraduate in the Barrett Honors College and is continuing as a graduate student. Her outlet from all that mental work is running up to 90 miles per week as a Sun Devil athlete on the cross-country team.